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Abstract. Stochastic Langevin equations for the Wolf–Villain (WV) and Das Sarma–
Tamborenea (DT) models are derived using the alternative method recently developed by
Costanza (1997Phys. Rev.E 55 6501) which avoids the complications arising in the calculation
of the first moment of the transition rate required in the master equation approach. The
calculations are compared with those recently published by Zhi-Feng Huanget al (1996 Phys.
Rev. E 54 5935) obtaining the same results, as is expected. The microscopic rules are derived
from the set of 243 elementary local configurations needed for the description of these two
models and after using simple summation rules these were reduced to 16 for the DT model and
to 25 for the WV model. The number of microscopic rules needed for the description of the
present models are considerably larger than the previously solved models.

1. Introduction

Surface growth via molecular-beam epitaxy is of great theoretical importance and
has received much attention during recent years, particularly due to the technological
implications. In order to describe the surface growth different models have been introduced
in the literature [1–3]. Simulations are extensively performed in order to provide the scaling
exponents [4, 5] but this approach has sometimes shown that the results obtained are doubtful
and only careful studies can show to what universality classes the different models [6–
12] belong. These problems and the obvious pure theoretical interest in the study of the
universality classes via the construction of continuum growth equations largely justify the
two known approaches to derive the Langevin equations [13, 14]. It is well known that
the two most studied models of molecular-beam epitaxy are the Das Sarma–Tamborenea
(DT) [4] and Wolf–Villain (WV) [5]. These models differ slightly from each other in the
microscopic rules that define the relaxation process: in the former the particle may move
to the nearest neighbour which increases its coordination number and in the latter towards
the nearest-neighbour site which has the largest coordination number. The two known
routes to derive stochastic Langevin equations are the evaluation of the first moment of the
transition rate [13], or direct use of the microscopic rules describing the growth process
[14]. The latter method has advantages over the master equation approach due to the more
straightforward and intuitive nature of the procedure. Recently the two above-mentioned
models were solved by the master equation approach by Zhi-Feng Huanget al [15] obtaining
the corresponding Langevin equations.
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In this paper we will obtain both equations by use of the method developed by the
author in [14]. For the sake of completeness and clarity, the general procedure described
in section II of [14], is reviewed in section 2. The remainder of this paper is as follows.
In section 3 the elementary local configurations used to derive the microscopic rules are
defined and constructed for a simplified version of the DT model considering only the
relaxation mechanism (previously solved in [14]) avoiding the complication arising when
diffusion is also considered. In section 4 we describe the procedure leading to the Langevin
equation corresponding to the DT model. In section 5 the WV model is analysed and finally
conclusions are presented in section 6.

2. Discrete models and Langevin-type equations

Our procedure to obtain the Langevin equation for the motion of the surface profile is based
on the elementary microscopic growth rules for the height of a given site. In the following
we consider a one-dimensional lattice withN sites with periodic boundary conditions. The
height of a given sitei, hi(tn) is a function of the indexi and timetn. One can specify the
procedure as follows.

(i) A dummy indexj is chosen at random fromN integer numbers.
(ii) The height of a sitei at time tn+1 = tn + τ0 (here τ0 is the elemental timestep

between two successive depositions in any site of the lattice) is given by

hi(tn+1) = Rj({hi(tn)}) (1)

whereRj({hi(tn)}) gives the growth rules for the height of the sitei and depends on the
value of the dummy indexj . Such dependence is specified by the rules ‘a priori’, and in
general can be dependent on the complete set of heights{hi(tn)} at timetn before deposition.

Let us define now the time interval between two successive depositions on sitei as

τi,m = τ + δτi,m (2)

whereτ is the mean time interval between two successive depositions on sitei and δτi,m
is the random deviation from the mean valueτ . With this consideration we can write
equation (1) for timet + τi,m as

hi(t + τi,m) = Rj({hi(t + τi,m − τ0)}) (3)

wheret = tm is the time of the previous deposition (see figure 1).
In order to illustrate the derivation of the Langevin equation from the growth rules

given in equation (3), in sections 4 and 5 we shall obtain the microscopic rules for two well
known growth models: the DT and the WV models.

3. Elementary local configurations

In order to obtain the microscopic rules that define each model it is necessary to generate
all the possible ‘local configurations’ according to the specific model. We shall see that the
number of local configurations that define a model are in general greater then, or at least
equal to, the number of microscopic rules. To generate the possible local configurations the
following steps are necessary: (i) determine the maximum number of neighbours involved
in the growth of one site corresponding to a given model, (ii) obtain one method for the
generation of all the possible local configurations corresponding to the maximum number of
neighbours, (iii) determine which of those configurations generate the growth on the generic
site i and (iv) minimize the number of rules. Note that the last step is not really necessary.
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Figure 1. A portion of thehi(t) plot. It is easy to see that, due to the fact thathi(t) is constant
between two successive depositions,hi(tm + τi,m − τ0) = hi(tm).

However, the reduction in the number of microscopic rules facilitates the attainment of
the Langevin equations. In order to illustrate the above description we shall obtain the
microscopic rules of the DT model (without diffusion) given in [14] in detail.

3.1. DT model (without diffusion)

The DT model without diffusion has been studied in [14], where five microscopic rules
were given to define the model. Due to the fact that the falling particle remains in the
randomly chosen site or relaxes to one of the two neighbours, the maximum number of
particles involved in this model is three. On the other hand, the relaxation depends on
whether the height differences of two nearest neighbourshk − hl is bigger, smaller than
or equal to zero(hk − hl > 0, hk − hl < 0 or hk − hl = 0). Then, for this model there
are two steps between the three particles involved and nine possible local configurations
per site (see figure 2). The other 18 configurations can be obtained making the substitution
i → i−1 in the nine rules given in figure 2 generating the rulesr10, . . . , r18 and making the
substitutioni → i + 1 the last nine configurationsr19, . . . , r27 are obtained and complete
the configurations that define this model. It is easy to see that the definition of a model in
this graphical representation is achieved given the site where the falling particle deposits in
each of the 27 elementary local configurations.

Let us first define the height differenceHk
l between two sitesk andl at timet+τi,n−τ0

as

Hk
l = hk(t + τi,n − τ0)− hl(t + τi,n − τ0). (4)

After expandingHk
l in a Taylor series aboutt and retaining the first term, we obtain

Hk
l = hk(t)− hl(t)+O(τi,n − τ0) (5)

which is an approximation that will be used throughout this paper.
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Figure 2. The nine elementary local configurations generated by a particle falling on sitei for
the DT model. The upper arrow indicates the randomly chosen sitej and the lower the possible
sites where the falling particles relax or diffuse.

The analytical expression of the four elementary rules that generate a growth on sitei

due to a particle falling on sitei are

r2 = a[δi,j θ
∗(H i−1

i )δ(hi, hi+1)] (6)

r3 = a[δi,j θ
∗(H i−1

i )θ∗(H i+1
i )] (7)

r5 = a[δi,j δ(hi, hi−1)δ(hi, hi+1)] (8)

and

r6 = a[δi,j δ(hi−1, hi)θ
∗(H i+1

i )] (9)

wherea is the lattice constant,δk,l or δ(hk, hl) is the Kronecker symbol,θ(y) is the step
function andθ∗(y) = 1− θ(−y) for any k, l andy. In this paper we use the most compact
notationδk,l instead ofδ(xk, xl) according to that used in [14] with the hope that this causes
no confusion.

Adding equations (6) and (7) and using equation (103) of the appendix, we obtain

r2+ r3 = a[δi,j θ
∗(H i−1

i )θ(H i+1
i )] (10)

similarly,

r5+ r6 = a[δi,j δ(hi−1, hi)θ(H
i+1
i )]. (11)
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Finally, applying the same procedure to equations (10) and (11), we obtain

r2+ r3+ r5+ r6 = a[δi,j θ(H
i−1
i )θ(H i+1

i )]. (12)

This is the analytical expression for the ruler1 obtained in [14].
In the same way the elementary rules generated by a particle falling on sitei − 1 and

relaxing to sitei are the three shown in figure 2 (after replacingi by i−1) and the analytical
expressions are

r10 = a[δi−1,j θ
∗(H i−2

i−1 )θ
∗(H i−1

i )] (13)

r14 = a[δi−1,j δ(hi−2, hi−1)θ
∗(H i−1

i )] (14)

and

r16 = 1
2a[δi−1,j θ(H

i−1
i−2 )θ

∗(H i−1
i )]. (15)

Adding equations (13) and (14) and using equation (103) in the appendix, we obtain

r10+ r14 = a[δi−1,j θ
∗(H i−1

i )θ(H i−2
i−1 )]. (16)

This is the analytical expression for ruler2 in [14] andr16 is the same asr3 as we expected.
Finally, the elementary rules corresponding to the relaxation of one particle falling on

site i + 1 and producing a growth in sitei are the three shown in figure 2 after replacingi
by i + 1 in all the rules. The analytical expressions are

r25 = 1
2a[δi+1,j θ

∗(H i+1
i )θ∗(H i+1

i+2 )] (17)

r26 = a[δi1,j δ(hi+2, hi+1)θ
∗(H i+1

i )] (18)

and

r27 = a[δi+1,j θ(H
i+2
i+1 )θ

∗(H i+1
i )]. (19)

Adding equations (18) and (19) and using equation (103) of the appendix, we obtain

r25+ r26 = a[δi+1,j θ
∗(H i+1

i )θ(H i+2
i+1 )]. (20)

This is the analytical expression for the ruler4. On the other handr27 is the same asr5 and
completes the five rules given in [14].

This example shows the basic aspects of obtaining the growth rules of a given model
from the elementary local configurations. It is easy to see that the set of rules needed to
describe a model is not unique and we can use alternatively the 10 elementary rules given
above or the five microscopic rules given in [14]. The use of the summation procedure
given in the appendix is extremely useful and simplifies considerably the work needed to
deduce the Langevin equations.

4. Das Sarma–Tamborenea model

In this section we apply our procedure to obtain the Langevin equation from the elementary
relaxation and diffusion mechanisms of the DT model.

Now, we must derive explicitly the rules given in equation (3) for the DT model. In
this model with relaxation and diffusion the maximum number of sites involved are five
and the number of steps four. As we have shown in the previous example each step can
be in three ‘states’ and the number of elementary local configurations is 34 = 81 per site,
then the growth of the generic sitei due to particles falling on sitesi, i − 1 andi + 1 will
give a total of 243 elementary local configurations. Using repeatedly the summation rules
given in the appendix and after tedious but simple deductions as in the previous section,
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the growth rules for the sitei (see figure 3) can be obtained. Avoiding the generation of
the 243 elementary local configurations and the reduction to the microscopic rules given in
figure 3, we proceed straightforwardly to give the analytical expressions for the microscopic
rules.

Let us first write equation (3) as

hi(t + τi,n) = hi(t)+ r1+ r2+ · · · + r16 (21)

where the elementary rulesr1, . . . , r16 can be written analytically as

r1 = a[δi,j θ(H
i−1
i−2 )δ(hi, hi−1)δ(hi+1, hi)θ(H

i+1
i+2 )] (22)

r2 = a[δi,j θ
∗(H i−1

i )θ(H i
i+1)] (23)

r3 = a[δi,j θ
∗(H i−1

i )θ∗(H i+1
i )] (24)

r4 = a[δi,j θ(H
i
i−1)θ

∗(H i+1
i )] (25)

r5 = a[δi+1,j θ
∗(H i−1

i )δ(hi+1, hi)δ(hi+2, hi+1)θ(H
i+2
i+3 )] (26)

r6 = 1
2a[δi+1,j θ

∗(H i−1
i )δ(hi+1, hi)δ(hi+2, hi+1)θ

∗(H i+3
i+2 )] (27)

r7 = a[δi+1,j θ
∗(H i+1

i )δ(hi+2, hi+1)θ(H
i+2
i+3 )] (28)

r8 = 1
2a[δi+1,j θ

∗(H i+1
i )δ(hi+2, hi+1)θ

∗(H i+3
i+2 )] (29)

r9 = 1
2a[δi+1,j θ

∗(H i−1
i )δ(hi+1, hi)θ

∗(H i+1
i+2 )] (30)

r10 = 1
2a[δi+1,j θ

∗(H i+1
i )θ∗(H i+1

i+2 )] (31)

r11 = a[δi−1,j θ(H
i−2
i−3 )δ(hi−1, hi−2)δ(hi, hi−1)θ

∗(H i+1
i )] (32)

r12 = 1
2a[δi−1,j θ

∗(H i−3
i−2 )δ(hi−1, hi−2)δ(hi, hi−1)θ

∗(H i+1
i )] (33)

r13 = a[δi−1,j θ(H
i−2
i−3 )δ(hi−1, hi−2)θ

∗(H i−1
i )] (34)

r14 = 1
2a[δi−1,j θ

∗(H i−3
i−2 )δ(hi−1, hi−2)θ

∗(H i−1
i )] (35)

r15 = 1
2a[δi−1,j θ

∗(H i−1
i−2 )δ(hi, hi−1)θ

∗(H i+1
i )] (36)

r16 = 1
2a[δi−1,j θ

∗(H i−1
i−2 )θ

∗(H i−1
i )] (37)

andhi(t + τi,n − τ0) = hi(t) was used (see figure 1).
In order to compare the results of this section with the results of [15] let us write

equation (3) as

hi(t + τi,n) = hi(t)+ a(δi,jwi + δi+1,jwi+1+ δi−1,jwi−1) (38)

where

wi = r(1)1 + · · · + r(1)4 (39)

wi+1 = r(2)5 + · · · + r(2)10 (40)

wi−1 = r(3)11 + · · · + r(3)16 (41)

and

r
(1)
l =

rl

δi,j
for l = 1, . . . ,4 (42)

r
(2)
l =

rl

δi+1,j
for l = 5, . . . ,10 (43)

r
(3)
l =

rl

δi−1,j
for l = 11, . . . ,16. (44)
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Figure 3. The 16 graphical representations corresponding to the rulesr1, . . . , r16 of the DT
model indicating all the possible situations for the growth of sitei. The upper arrow indicates
the randomly chosen sitej and the lower the possible sites where the falling particles relax
or diffuse. The broken vertical segments between two nearest neighboursk and l indicate that
hk > hl and the full ones thathk > hl . (a) The four rules for the situation where the particle
falls on sitei. (b) The six rules corresponding to the situation where the particle falls on site
i + 1. (c) The six rules corresponding to the situation where the particle falls on sitei − 1. It
is interesting to observe that the rules of (c) are the specular image of those shown in (b).
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Figure 3. (Continued)

Expandinghi(t + τi,n) in a Taylor series and retaining the first two terms, equation (6)
can be written as

dhi(t)

dt
τi,n = a(δi,jwi + δi+1,jwi+1+ δi−1,jwi−1). (45)

Expanding the Kronecker symbols in a Taylor series as in appendix A of [14] we easily
find

δi,j = 1+ ηi(xj )+ ηi(xi) (46)

δi+1,j = 1+ ηi+1(xj )+ ηi+1(xi+1) (47)

δi−1,j = 1+ ηi−1(xj )+ ηi−1(xi−1) (48)

and splittingτi,n as in equation (2) we obtain

dhi(t)

dt
= a

τ
(wi + wi+1+ wi−1)+ η. (49)

Here the sum of the right-hand side is exactly the first transition moment obtained by
Zhi-Feng Huanget al in [15] and the remainder termη can be written as (see appendix A
in [14]):

η = η0+ ηs + ηd (50)

where

η0 = −dhi(t)

dt

δτi,n

τ
(51)

ηs = ηi(xj )wi + ηi+1(xj )wi+1+ ηi−1(xj )wi−1

τ
(52)

and

ηd = ηi(xi)wi + ηi+1(xi+1)wi+1+ ηi−1(xi−1)wi−1

τ
. (53)
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Finally, after using the results given in appendix B of [14] consisting in replacing
hi(t) by an interpolating functionh(xi, t), expanding all the Kronecker symbols and step
functions in a Taylor series retaining terms up toA2(H

k
l )

2 and expandingHk
l in a Taylor

series up to O(a5), we can easily find the continuum growth equation of the Langevin type
corresponding to the DT model, namely

∂h(xi, t)

∂t
=
[
F − ν4

∂4h(xi, t)

∂x4
i

+ λ22
∂2

∂x2
i

(
∂h(xi, t)

∂xi

)2
]
+ η (54)

where

F = a

τ
(55)

ν4 = a5

τ
A1 (56)

λ22 = a5

τ
(−A2

1+ 2A2) (57)

in complete agreement with equations (23) and (24) of [15] as we expected.
During the derivation of the Langevin equation we neglect the productsA2A1 andA2A2

and consequentlyθ∗(Hk
l )δ(hm, hn) ≈ θ∗(Hk

l ) for any k, l,m and n. This approximation
simplifies enormously the tedious but simple calculations.

5. Wolf–Villain model

This model is defined by the following rules shown graphically in figure 4

hi(t + τi,n) = hi(t)+ r1+ r2+ · · · + r25 (58)

where the analytic expressions for the 25 rules are

r1 = a[δi,j θH
i−1
i−2 )δ(hi, hi−1)δ(hi+1, hi)θ(H

i+1
i+2 )] (59)

r2 = a[δi,j θ(H
i−1
i )θ(H i+1

i )] (60)

r3 = −a[δi,j δ(hi−1, hi)δ(hi+1, hi)] (61)

r4 = a[δi,j θ
∗(H i−1

i )θ∗(H i
i+1)θ(H

i+1
i+2 )] (62)

r5 = a[δi,j θ(H
i−1
i−2 )θ

∗(H i
i−1)θ

∗(H i+1
i )] (63)

r6 = a[δi+1,j θ
∗(H i−1

i )δ(hi+1, hi)δ(hi+2, hi+1)θ(H
i+2
i+3 )] (64)

r7 = 1
2a[δi+1,j θ

∗(H i−1
i )δ(hi+1, hi)δ(hi+2, hi+1)θ

∗(H i+3
i+2 )] (65)

r8 = a[δi+1,j θ
∗(H i+1

i )δ(hi+2, hi+1)θ(H
i+2
i+3 )] (66)

r9 = a[δi+1,j θ
∗(H i−1

i )θ∗(H i+1
i )δ(hi+2, hi+1)θ

∗(H i+3
i+2 )] (67)

r10 = 1
2a[δi+1,j θ(H

i
i−1)θ

∗(H i+1
i )δ(hi+2, hi + 1)θ∗(H i+3

i+2 )] (68)

r11 = 1
2a[δi+1,j θ

∗(H i−1
i )δ(hi+1, hi)θ

∗(H i+1
i+2 )θ(H

i+2
i+3 )] (69)

r12 = a[δi+1,j θ
∗(H i−1

i )θ∗(H i+1
i )θ∗(H i+1

i+2 )θ(H
i+2
i+3 )] (70)

r13 = 1
2a[δi+1,j θ(H

i
i−1)θ

∗(H i+1
i )θ∗(H i+1

i+2 )θ(H
i+2
i+3 )] (71)

r14 = 1
2a[δi+1,j θ

∗(H i−1
i )θ∗(H i+1

i )θ∗(H i+1
i+2 )θ

∗(H i+3
i+2 )] (72)

r15 = a[δi+1,j θ
∗(H i−1

i )θ∗(H i+1
i )θ∗(H i+2

i+1 )] (73)

r16 = a[δi−1,j θ(H
i−2
i−3 )δ(hi−1, hi−2)δ(hi, hi−1)θ

∗(H i+1
i )] (74)
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Figure 4. The 25 graphical representations corresponding to the rulesr1, . . . , r25 of the WV
model indicating all the possible situations for the growth of the sitei. The upper arrow indicates
the randomly chosen sitej and the lower the possible sites where the falling particles relax or
diffuse. (a) The five rules for the situation where the particle falls on sitei. (b) The 10 rules
corresponding to the situation where the particle falls on sitei+1. (c) The 10 rules corresponding
to the situation where the particle falls on sitei − 1. (d) The three rules equivalent tor2 and
r3 in (a). It is interesting to observe that in this model the rules in (c) are again the specular
image of those shown in (b).

r17 = 1
2a[δi−1,j θ

∗(H i−3
i−2 )δ(hi−1, hi−2)δ(hi, hi−1)θ

∗(H i+1
i )] (75)

r18 = a[δi−1,j θ(H
i−2
i−3 )δ(hi−1, hi−2)θ

∗(H i−1
i )] (76)

r19 = 1
2a[δi−1,j θ(H

i−2
i−3 )θ

∗(H i−1
i−2 )δ(hi, hi−1)θ

∗(H i+1
i )] (77)

r20 = a[δi−1,j θ
∗(H i−3

i−2 )δ(hi−1, hi−2)θ
∗(H i−1

i )θ∗(H i+1
i )] (78)

r21 = 1
2a[δi−1,j θ

∗(H i−3
i−2 )δ(hi−1, hi−2)θ

∗(H i−1
i )θ(H i

i+1)] (79)

r22 = 1
2a[δi−1,j θ(H

i−2
i−3 )θ

∗(H i−1
i−2 )(H

i−1
i )θ∗(H i+1

i )] (80)

r23 = 1
2a[δi−1,j θ(H

i−2
i−3 )θ

∗(H i−1
i−2 )θ

∗(H i−1
i )θ(H i

i+1)] (81)

r24 = 1
2a[δi−1,j θ

∗(H i−3
i−2 )θ

∗(H i−1
i−2 )θ

∗(H i−1
i )θ∗(H i+1

i )] (82)

r25 = a[δi−1,j θ
∗(H i−2

i−1 )θ
∗(H i−1

i )θ∗(H i+1
i )]. (83)

In the same way as in the previous section

wi = r(1)1 + · · · + r(1)5 (84)

wi+1 = r(2)6 + · · · + r(2)15 (85)

wi−1 = r(3)16 + · · · + r(3)25 (86)

and

r
(1)
l =

rl

δi,j
for l = 1, . . . ,5 (87)
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Figure 4. (Continued)

r
(2)
l =

rl

δi+1,j
for l = 6, . . . ,15 (88)

r
(3)
l =

rl

δi−1,j
for l = 16, . . . ,25. (89)

Replacingwi,wi−1 and wi+1 in equations (45)–(53) the first transition moment, the
discrete Langevin equation andη are straightforwardly evaluated.

Defining an interpolating function for the height profile, expanding as in the previous
section all the functions in a Taylor series and retaining terms up to O(a5), the corresponding
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Figure 4. (Continued)

continuum Langevin equation for the WV model is

∂h(xi, t)

∂t
=
[
F − ν4

∂4h(xi, t)

∂x4
i

+ λ22
∂2

∂x2
i

(
∂h(xi, t)

∂xi

)2

− λ13
∂

∂xi

(
∂h(xi, t)

∂xi

)3
]
+ η (90)

where

F = a

τ
(91)

ν4 = a5

τ
A1 (92)
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Figure 4. (Continued)

λ22 = a5

τ
(−A2

1+ 2A2) (93)

λ13 = −2a5

τ
A3

1. (94)

After the 243 elementary local configurations corresponding to this model are reduced
using the summation rules given in the appendix, we obtainr1, r4, r5 and the three rules given
in figure 4(d). It is not difficult to show that the sum of the three rules given in figure 4(d)
are equal to the sum of the rulesr2 andr3 given in figure 4(a). The demonstration is based
on equation (103) given in the appendix. Let us writer2 as

r2 = aδi,j [θ∗(H i−1
i )+ δ(hi−1, hi)][θ

∗(H i+1
i )+ δ(hi, hi+1)]. (95)

Expanding the product in the right-hand side it is easy to see that

r2 = −r3+ r01+ r02+ r03 (96)

and then the sum of the two rules(r2 + r3) given in figure 4(a) is equal to the sum of the
three rules(r01+ r02+ r03) given in figure 4(d).

6. Conclusions

The two discrete models discussed in this paper are probably the most studied models of
molecular-beam epitaxy and were introduced by DT and WV in order to mimic surface
growth processes with deposition and surface diffusion. The general procedure of deriving
continuum Langevin equations directly from the growth rules, avoiding the complications
arising in the master equation approach, was used and compared with the previous results
obtained in [15]. Our method is considerably simpler and more intuitive than the master
equation approach and the generalization to higher dimensions is straightforward. This
generalization is of great importance not just for pure theoretical reasons but for the fact
that simulations on two-dimensional systems are extremely time-consuming. It is interesting
to note that the number of microscopic rules corresponding to the DT and WV models are
considerably larger than the two models studied in [14] and the reasons are the inclusion of
the surface diffusion and the fact that the relaxation depends on the next-nearest neighbours
in these models. On the other hand the concept of elementary local configurations was
developed in section 3 and the microscopic rules were derived using simple summation rules.
An isomorphism between the analytical and the graphical representations was established in
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the appendix allowing a rigorous passage from one representation to the other. In conclusion,
the method for the construction of the Langevin equations developed in [14] shows that the
discrete model approach is considerably easier and more intuitive than the equivalent master
equation approach. The concept of elementary local configurations allows the derivation
of the microscopic rules and demonstrates that the set of rules used in the definition of a
given model is not unique and the use of the simplest set is convenient but not necessary.
Finally, the summation rules allow the connection of two sets of rules and give a tool to
determine whether both sets belong to the same model or not.

Appendix

A.1. Graphic–analytic equivalence

The equivalence between the graphical and the analytical representation of the growth rules
used to describe a given model can be reduced to the following six, needed to compare the
height difference between two nearest neighboursk and l

θ(Hk
l ) = (97)

θ(H l
k) = (98)

δ(hk, hl) = (99)

θ∗(Hk
l ) = (100)

θ∗(H l
k) = (101)

↓
δi+α,j = ι+ α for α = −1, 0, 1. (102)

With the six definitions given above it is easy to generate more complex rules consisting
in products of the analytical elementary rules and the equivalent graphical representation
consisting in putting the elementary graphs in a sequence such as those shown in figures 2–
4. Vice versa, given a graph consisting in a sequence of elementary graphs we can find
the analytical representation writing the corresponding products (one per pair of nearest-
neighbour sites) of elementary rules.

A.2. Useful summation rules

Two useful relations between the elementary rules that are needed to reduce the number of
graphs and the length of a given graph are

θ(Hk
l ) = θ∗(Hk

l )+ δ(hk, hl) (103)

and

θ∗(Hk
l )+ θ∗(H l

k)+ δ(hk, hl) = 1. (104)
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The rule given in equation (103) was used in section 3 in the process of reducing the
elementary rules for the DT model without diffusion to the five microscopic rules given in
[14]. Let us show an example where the rule given in equation (104) is used. The ruler8
shown in figure 3(b) is the sum of the following three

r81 = 1
2a[δi+1,j θ

∗(H i
i−1)θ

∗(H i+1
i )δ(hi+2, hi+1)θ

∗(H i+3
i+2 )] (105)

r82 = 1
2a[δi+1,j δ(hi−1, hi)θ

∗(H i+1
i )δ(hi+2, hi+1)θ

∗(H i+3
i+2 )] (106)

and

r83 = 1
2a[δi+1,j θ

∗(H i−1
i )θ∗(H i+1

i )δ(hi+2, hi+1)θ
∗(H i+3

i+2 )]. (107)

The graphical representation of rulesr81, r82 andr83 is the same as graphr8 in figure 3(b)
with an extra step betweeni − 1 and i corresponding to the three elementary rules
θ∗(H i

i−1), δ(hi−1, hi) andθ∗(H i−1
i ) respectively.
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